Towards Inverse Form Finding Methods for a Deep Drawing Steel DC04

Author:

Germain Sandrine1,Steinmann Paul2

Affiliation:

1. Friedrich-Alexander University of Erlangen-Nuremberg

2. Friedrich-Alexander University Erlangen-Nuremberg

Abstract

A challenge in the design of functional parts in metal forming processes is the determination of the initial, undeformed shape such that under a given load a part will obtain the desired deformed shape. An inverse mechanical or a shape optimization formulation might be used to solve this problem, which is inverse to the standard kinematic analysis in which the undeformed shape is known and the deformed shape unknown. The objective of the inverse mechanical formulation aims in the inverse deformation map that determines the (undeformed) material configuration, where the spatial (deformed) configuration and the mechanical loads are given. The shape optimization formulation predicts the initial shape in the sense of an inverse problem via successive iterations of the direct problem. In this paper, both methods are presented using a formulation in the logarithmic strain space. An update of the reference configuration of the sheet of metal during the optimization process is proposed in order to avoid mesh distortions. A first example showed the results obtained with both methods in isotropic hyperelasticity. A second example illustrated a simplified deep drawing computed with the shape optimization formulation in isotropic elastoplasticity. From the undeformed shapes obtained with both methods the deformed shapes are acquired with the direct mechanical formulation. Compared to the target deformed shape a minor difference in node coordinates is found. The computation time is lower with the inverse mechanical formulation in hyperelasticity. The update of the reference configuration in the shape optimization formulation allowed to avoid mesh distortions but increased the computational costs.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3