Identification of Forming Limits for Unidirectional Carbon Textiles in Reality and Mesoscopic Simulation

Author:

Böhler Patrick1,Härtel Frank1,Middendorf Peter1

Affiliation:

1. University of Stuttgart

Abstract

In several fields of engineering the use of carbon fibre reinforced material (CFRP) is increasing. Minimized weight due to CFRPs could lead to lower consumption of raw materials especially in the automotive area. The goal within the research project TC² is the decrease of costs and production time for composite materials. To achieve better performance to weight ratio and to get acceptable production conditions the draping of dry unidirectional textiles and a following RTM process is investigated. Due to the high degree of complexity of automotive structures the forming process is challenging. Gapping in the textile could appear at corners as well as wrinkling or flexion of the fibres. To be able to define the amount and direction of layers or patches it is necessary to know the limits of forming for unidirectional material and to be able to predict the behaviour of the textile during the forming process. For the definition of the process limits several draping strategies are performed on different corner blend geometries. The goal of that work is to define the critical gradient of the flange to get first failures such as wrinkling or gapping. It is also important to understand the influence of different draping strategies. Parallel to the experimental tests a mesoscopic simulation method using an approach with roving and sewing thread is developed and presented. It is able to predict the material behaviour in critical areas (gapping, wrinkling). Different Young’s moduli and failure criteria can be implemented for the two main directions as well as for the bending of the textile. A validation with the experimental results is performed with the aim to enable the prediction of the textile behaviour using simulation methods.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3