Influence of Contact Materials on Phenomena in a Short Electrical Arc

Author:

Kharin S.N.1,Sarsengeldin M.2

Affiliation:

1. Kazakh-British Technical University

2. Suleyman Demirel University

Abstract

Investigation of transition phenomena accompanying the evolution of metallic phase of electric arc into gaseous phase is very important for the further progress in such fields as plasma technologies, electrical apparatus, plasmatrons and other technical applications. Some aspects of this transition are considered in presented paper on the base of mathematical model described dynamics of phenomena in the arc column, near-electrode zones, anode and cathode solids. Cathode and anode phenomena such as ion bombardment, thermionic emission, inverse electron flux, evaporation, radiation, heat conduction etc. are considered in dependence on time, current, opening velocity, parameters of the gas and contact materials. The conditions of the arc transition from one phase to another are formulated in terms of above characteristics and increasing of gas ionization level. Special experiments with two contacts materials, and have been carried to verify the mathematical model. The results of calculation and experimental data enables us to conclude that in metallic arc phase (short arc length), which is characterized by material transfer from the anode to the cathode, the erosion of contacts is considerably small than erosion of contacts both for resistive and inductive circuits, while in gaseous arc phase (long arc length) with opposite material transfer the rate of erosion depends on the inductance. If the inductance, then contacts have smaller erosion in comparison with contacts, however for inductive circuits situation is quite different, thus use of contacts in the case of long arcs burning in gaseous phase is more preferable. It was found also that the addition of niobium diselenide (1%) and tantalum (5%) into silver contact material which are sublimating into arc plasma enables to change ionization potential, that leads to decreasing of the arc temperature, arc duration and contact erosion.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3