Nanostructured Surfaces that Show Antimicrobial, Anticorrosive, and Antibiofilm Properties

Author:

Reddy G.S.1,Nadagouda Mallikarjuna N.2,Sekhar Jainagesh A.1

Affiliation:

1. University of Cincinnati

2. U.S. Environmental Protection Agency

Abstract

Provided in this article are the quantitative and qualitative morphological results describing the action of several nanostructured surfaces for bactericidal and bacteriostatic action. Results are also provided to illustrate microbial corrosion and its impact. Biofilm formation is correlated to colony formation. Nanostructured surfaces, i.e. surfaces with welded nanoparticles are noted to display biocidal activity with varying efficacies. Porous nanostructures, on stainless steel and copper substrates, made of high purity Ag, Ti, Al, Cu, MoSi2, and carbon nanotubes, are tested for their efficacy against bacterial colony formation for both gram-negative, and gram-positive bacteria. Silver and Molybdenum disilicide (MoSi2) nanostructures are found to be the most effective bactericidal agents with MoSi2 being particularly effective in both low and high humidity conditions. Bacteriostatic activity is also noted. The nanostructured surfaces are tested by controlled exposures to several microbial species including (Gram+ve) bacteria such as Bacillus Cereus and (Gram-ve) bacteria such as Enterobacter Aerogenes. The resistance to simultaneous exposure from diverse bacterial species including Arthrobacter Globiformis, Bacillus Megaterium, and Cupriavidus Necator is also studied. The nanostructured surfaces were found to eliminates or delay bacterial colony formation, even with short exposure times, and even after simulated surface abrasion. The virgin 316 stainless steel and copper substrates, i.e. without the nanostructure, always displayed rapid bacterial colony evolution indicating the lack of antimicrobial action. The efficacy of the nanostructured surface against colony formation (bacterial recovery) for E-Coli (two strains) and virus Phi 6 Bacteriophage with a host Pseudomonas Syringae was also studied. Preliminary results are presented that also show possible anti-fungal properties by the nanostructured MoSi2. When comparing antimicrobial efficacy of flat polished surfaces (no curvature or nanostructure) with nanostructure containing surfaces (high curvature) of the same chemistry, shows that bacterial action results from both the nanostructure size and chemistry.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3