Electroformed Diamond Tool Adaptable to Nanometer Grinding of Cemented Carbide

Author:

Gohya Naoko1,Sun Wan Fu1,Amamoto Yoshifumi1,Semba Takuya1

Affiliation:

1. Fukoka Institute of Technology

Abstract

An electroformed diamond tool with a tool tip radius of 0.2 mm was developed to achieve a surface roughness of less than 10 nm Rz on a mould made of cemented carbide. A polycrystalline diamond disc with a primary grain size of 0.5 µm and a diameter of 15 mm was used as a truer. A concentric guide groove with a reverse profile relative to the hemispherical tool and a surface roughness of 0.5 µm Rz was preformed on the truer by laser machining and wet lapping. It was verified through a truing test that 93 % of the diamond grains on the tool working surface could be flattened when the tool was placed in elastic contact with a guide groove with a depth of 50 µm. A grinding test revealed that the tool had the potential to efficiently fabricate a ground surface with a roughness of less than 10 nm Rz on cemented carbide with a hardness of 2600 Hv.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication and grinding performance of CVD diamond abrasive tool;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3