A Development of Dispenser for High-Viscosity Liquid and Pick and Place of Micro Objects Using Capillary Force

Author:

Kumagai Kazuya1,Fuchiwaki Ohmi1

Affiliation:

1. Yokohama National University

Abstract

In this paper, we describe the development of a needle based dispenser for high-viscosity liquid, and pick & place of micro objects using capillary force. Recently, miniaturization of portable devices and their electronic parts has been remarkable. So we think that there are a lot of needs for micro manipulation for making more complex and smaller devices. There are a lot of possibilities to manipulate complex-shaped micro objects by using liquid because it changes its shape flexibly according to the shape of the contact surface. We have developed a unique surface mounting technology which is based on a movable shaft driven by a piezoelectric linear motor. We can simply apply high-viscosity liquid drops by stamping the wet tip of the shaft on a substrate, and we confirm that the device is able to apply a liquid the viscosity of which is about 1200Pas. We have studied the relation between viscosity and diameters of applied liquid drops via several experiments. We have also conducted interesting experiments in which we pick and place some small and complex-shaped objects using capillary force. We confirmed that if capillary force between the shaft and micro object is larger than that between the substrate and the micro object, we are able to place a chip-capacitor weighing below 1 mg. This simple method is very effective because any shaped object can be mounted. However, fast control and accurate control of the shaft are needed for efficient production and accurate mounting. To realize this, we developed a PID controller for the dispenser with an optical liner encoder with a resolution of 30 nm. We confirm that settling time becomes less than 50 ms when the shaft moves 5 mm with 1 micrometre accuracy.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference6 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3