An Integrated Approach to Accurate Part Manufacture in Single Point Incremental Forming Using Feature Based Graph Topology

Author:

Behera Amar Kumar1,Lauwers Bert1,Duflou Joost R.1

Affiliation:

1. Katholieke Universiteit Leuven

Abstract

Previous studies have shown that optimized tool paths based on behavior of individual features and feature interactions can be used to improve the accuracy of features in parts produced by single point incremental forming. These tool paths are generated with compensated CAD files of the part, which result from a prediction of deviations of individual features. However, in order to improve the accuracy of an entire part, it is important to systematically look at behavior of all the individual features and all feasible interactions between features. In this paper, the authors present a graph topology approach to integrating the effects of the behavior of all features present in a part. For any given part, a conceptual graph is constructed representing all the features and connecting them based on their spatial locations with conceptual relations. Next, all possible feature interactions based on the generated graph are analyzed, and the deviations due to the feasible interactions in an uncompensated test are predicted. Depending on the feature types and interactions present, a comprehensive strategy for accurate part manufacture is generated. This strategy may be composed of a selection of one or more complementary tool path strategies for compensating the anticipated deviations on the part. Case studies illustrating improvement in accuracy of parts produced by this technique are discussed next to justify the use of the graph based approach.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manufacture of tunnel-shaped sheet metal parts with improved accuracy using novel toolpath strategies for single point incremental forming;The International Journal of Advanced Manufacturing Technology;2024-07-01

2. Study of Single Point Incremental Sheet Metal Forming Trajectory Generation;2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2023-07-31

3. Potential of Incremental Forming Techniques for Aerospace Applications;Materials, Structures and Manufacturing for Aircraft;2022

4. Automated parameterization of local support at every toolpath point in robot-based incremental sheet forming;Procedia Manufacturing;2019

5. Geometry-dependent parameterization of local support in robot-based incremental sheet forming;Procedia Manufacturing;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3