Edge Sharpening and Surface Modification of PcBN Cutting Tool by Pulsed Laser Grinding

Author:

Suzuki Daisuke1,Itoigawa Fumihiro1,Kawata Keiich2,Suganuma Tetsuro3,Nakamura Takashi1

Affiliation:

1. Nagoya Institute of Technology

2. Aichi Industrial Technology Institute

3. Takahiro Engineering Works Ltd.

Abstract

PcBN cutting tools have excellent characteristics such as high degree of hardness and low chemical reactivity, so they have potential to replace high precision grinding of hardened steel with high precision cutting. PcBN might be more efficient tool material if improvement in formability, and good surface modification can be achieved. In order to solve these problems, Pulsed Laser Grinding (PLG) is applied to a shape cutting edge and to finish a rake face. After processing by the PLG, shaped cutting edges were observed with a scanning electron microscope (SEM) and measured with contact- type profilometer. As a result, cutting edges processed by the PLG are similar or shaper than that by conventional diamond grinding. In addition, as a one of effects of surface modification, The Vickers microhardness of rake faces increases by about 10 present after PLG. On the other hand, according to frictional test with lateral force microscopy, the coefficient of friction of rake face decreases by half of ordinary surface. Depending on these advantages of PLG, high precision turning of hardened steel with 58HRC in hardness by use of the tool processed by PLG can demonstrate good performance rather than a commercial tool with diamond grinding finish.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3