Affiliation:
1. Faserinstitut Bremen e.V.
2. Universität Bremen
Abstract
One of the largest issues remaining on the way to in situ Structural Health Monitoring of composite structures using Lamb waves is the impact that non-damaging factors like temperature changes and humidity absorption have on most measurement strategies. While some of these tasks have been successfully conquered, others, especially related to slowly developing influences like humidity absorption or mechanical ageing, remain challenging. In this paper, a method to approach this problem for a Lamb-wave based passive impact detection system is presented. Passive approaches use the waves generated by the impact event itself to both localize said event and evaluate whether it was large enough to damage the structure. For this, the impacts energy has to be estimated from sensors detecting the Lamb waves. The problem provided by changing conditions within the material is that the locally measurable wave amplitude due to an impact event of a certain energy is altered if the material properties change. This might happen due to temperature changes, mechanical loads, humidity absorption, fluid loads and other factors. The main idea of the presented approach is to mix a passive and an active system. Piezoelectric elements are used to generate Lamb waves to obtain the attenuation coefficients of the material before and after hot/wet-conditioning. These coefficients are then used to estimate the impact energy from passive sensor responses. Both the approach and experimental validation performed with low velocity impacts from an impact hammer are presented to show the ability to correctly calculate impact forces after conditioning.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献