Novel Three-Component Composite Materials (Hydroxyapatite/Polymer Mixtures) for Bone Regeneration

Author:

Ion Rodica Mariana1,Poinescu Aurora Anca2,Doncea Sanda Maria1

Affiliation:

1. ICECHIM

2. Valahia University from Targoviste

Abstract

Biomaterial is a non-drug substance suitable for inclusion in systems which augment or replace the function of body tissues or organs. The nano-hydroxyapatite (HAp) is one of the most applied biomaterial, a popular bone substitute, for coatings and other filler materials due to their ability to promote mineralization. Hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In order to improve the bioactivity and mechanical properties of hydroxyapatite, some synthetic and natural polymers (e.g., cellulose, collagen, chitosan, chitine) have been used as excellent candidates for bone/cartilage tissue engineering applications. In this paper we propose to synthesize novel three-component composite materials from HAp and cellulose (carboxymethyl cellulose, CMC) with one of the following natural polymers (chitosan (CS), chitine (CT), collagen (CLG), all of them named CX), biocompatible (from CMC) and with excellent antimicrobial activity (from HAp). Similarly to CS, CMC has an extensive network of intra- and inter-molecular hydrogen bonds which makes it insoluble in water or in common organic solvents. To prepare this new composite material, ionic liquids (ILs) have been used as potential green solvents for biopolymers, knowing that 1-butyl-3-methylimidazolium chloride [BMImCl] is able to dissolve up to 10% (w/w) of CMC, and other polysaccharides such as CS. In the studied systems, HAp particles were dispersed uniformly in organic phase, and are present strong chemical interactions between the three phases. In our case, a highly porous film was prepared and its bioactivity was investigated byin vitrotests in a simulated body fluid (SBF) for 6 months. By ICP-OES, was found a migration of analyzed metals (Fe, Mn, Cr and Ni) in simulated physiological fluids (SBF) analyzed after a period of 6 months, but only in the ppb concentrations range. Different system (HAp/CX/CMC) composites with weight ratios of 70/10/20, 70/15/15 and 70/20/10 were prepared. The new composites were characterized by infrared spectroscopy Fourier transformed (FT-IR), scanning electron microscopy (SEM) and ICP-OES. Their antimicrobial activity has been tested onCandida albicans,Candida parapsilosisandStaphylococcus aureus,proofing an excellent antimicrobial activity.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3