Finite Element Simulation and Experimental Study on Isothermal Forging Technology for a Complex-Shaped Titanium Alloy Wing

Author:

Cheng Feng1,Jiang Hong Yan2

Affiliation:

1. Southeast University

2. JiangSu University of Science and Technology

Abstract

A closed isothermal forging process was adopted for precision forming of the Ti-6Al-4V wing with a variable cross-section asymmetric structure. Firstly, simulations under different process parameters, such as the deformation temperature, punchs velocity et al. were analyzed with DEFORM-3D software to eliminate the defects in the isothermal forming process. The simulation results demonstrated that the loads during isothermal deformation were determined not just by the forging temperature but the punchs velocity, the less velocity of punch, the better filling ability, and yet temperatures from 900 to 950°C had less influence on filling ability. To verify the validity of simulation results, the isothermal forging experiment was carried out on an isothermal forging hydraulic press (THP10-630). It is demonstrated that the optimized billet dimension can ensure the quality of forging part and the titanium alloy wing component with complex shape was successfully forged with the punch speed of 0.1mm/s at 950°C and its mechanical performances were improved.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3