Thermal Simulation of Polymer Crystallization during Post-Filling

Author:

Spina Roberto1,Spekowius Marcel2,Küsters Klauss2,Hopmann Christian2

Affiliation:

1. Politecnico di Bari

2. RWTH Aachen

Abstract

Crystallization from polymer melt is one of the most fundamental phenomena of material phase transformations. The possibility of controlling crystallization kinetics is essential to achieve the proper polymer microstructure and consequently obtain desired material properties, reducing undesired effects such excessive anisotropy of shrinkage, warping and insufficient dimensional stability. Due to the high transformation rate, the simulation of crystallization is fundamental to mimic this important physical phenomenon under several testing and processing conditions by using commercial software. User subroutines were developed and implemented into finite element-based model to simulate crystal growth in semicrystalline polymers with various crystal morphologies. These subroutines allowed the commercial program Abaqus to be customized for solving the Kolmogoroff-Avrami-Evans equation with Hoffmann-Lauritzen model in order to simulate the variation of the polymer crystallization degree. The micro-structural evolution in non-isothermal conditions and with different cooling rates was considered. The study was performed on isotactic PP (SABIC PP 505) for its simplicity to the measure polymer crystals. A tensile test specimen, produced by injection molding, was chosen as case study to evaluate the crystallization evolution. The paper reports the numerical and experimental results.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3