A Study of the BTA Deep Drilling Process through a Quantitative and Qualitative Analysis of the Chip Formation Process

Author:

Haddag Badis1,Thil Julien1,Nouari Mohammed1,Barlier Claude1

Affiliation:

1. Université de Lorraine

Abstract

This paper deals with the analysis of the cutting process in the BTA (Boring Trepanning Association) deep hole drilling. The process is a major technique of drilling when the machining with a conventional tool is not possible. Poor training and/or poor chips evacuation often cause a temperature rise and excessive wear detrimental to the tool life and the dimensional stability of machined parts. The process is relatively not explored enough, because it is difficult to instrument experimental tests (measurement of forces acting at each insert of the BTA drilling tool, temperature at each cutting edge…). Moreover, the thermomechanical phenomena related to the cut are localized at the end of the BTA drilling head and confined in a zone inaccessible to the observation. Hence, a study of this process based on a scientific approach has been proposed. The evaluation of the chips morphology has been performed. Indeed, it is a good indicator of the stability of the cutting process and it can therefore be a serious help in the selection of optimal cutting parameters. Adequate parameters are proposed to highlight the impact of cutting conditions on the cutting process. Macro and microscopic observations of generated chips under several cutting conditions are performed. Fragmentation and segmentation of chips are some examples of analysed phenomena. In this sense, experimental tests have been conducted. The chips have been sorted according to their morphology and identified according to their origin and then proposed physical parameters are assessed. The quantitative and qualitative analysis of chips allowed identifying the impact of the cutting speed and feed rate on the cutting process.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3