Corrosion Resistance Study of Electrophoretic Deposited Hydroxyapatite on Stainless Steel for Implant Applications

Author:

Chew Kean Khoon1,Sharif Hussein Sharif Zein1,Latif Ahmad Abdul1,McPhail David S.2,Boccaccini Aldo Roberto3

Affiliation:

1. Universiti Sains Malaysia

2. Imperial College London

3. University of Erlangen-Nürnberg

Abstract

Stainless steel (SS) is often used for orthopaedic and dental implants because of its excellent mechanical characteristics. However, from an electrochemical perspective, SS can be susceptible to corrosion-related problems. Inorganic bioactive coatings on SS surfaces are reported to impart corrosion resistance and enhance biocompatibility. In this paper, hydroxyapatite (HA) coatings were developed on SS 316L by an electrophoretic deposition (EPD) technique at applied deposition voltages from 10 to 60 V in an acidic aqueous solution. The present study was performed to optimise the applied voltage required to produce stable HA coatings on SS 316L. Their corrosion resistance in simulated body conditions were investigated using the potentiodynamic polarisation curves. The results of the electrochemical studies revealed that the optimal applied voltage for EPD of HA on SS 316L was 40 V. The polarisation parameters, such as the corrosion potential, breakdown potential and repassivation potential of HA coated materials demonstrated nobler behaviours than the uncoated SS 316L. These results validated the successful formation of stable and protective HA coatings on SS 316L.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on 3D Printing of Partially Absorbable Implants;Journal of The Institution of Engineers (India): Series C;2023-07-23

2. The role of additive manufacturing for biomedical applications: A critical review;Journal of Manufacturing Processes;2021-04

3. Biodegradable Materials for Bone Repair and Tissue Engineering Applications;Materials;2015-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3