Experimental Research on Interlaminal Shear Strength of GFRP Bridge Decks under Simulated Concrete Environment

Author:

Xue Wei Chen1,Fu Kai1

Affiliation:

1. Tongji University

Abstract

Fiber reinforced plastic (FRP) composite which has high strength, high fatigue resistance, low density, and better corrosion resistances is desirable characteristics for bridge applications, especially decks. According to the ACI 440.3R04, Glass fiber reinforced plastic (GFRP) bridge deck samples were immersed into the simulated concrete environment at 60 for 92d (corresponds to the natural environment 25 years). The results show that, with the time increased, the interlaminal shear strength of GFRP bridge decks decreased significantly. After being exposed to the simulated concrete environment for 3.65d, 18d, 36.5d and 92d, the interlaminal shear strength degradation of GFRP bridge decks were 18.69%, 25.90%, 50.93% and 53.74%, respectively. The micro-formation of the GFRP bridge deck sample surface was surveyed under scanning electron microscopy (SEM), which indicated that with the aging time increased, corrosion pits in the surface of GFRP bridge decks became more obviously and the interface between fiber and resin was severely damaged. Therefore, the degradation of FRP under the simulated concrete environment should be considered in the design of FRP bridge decks.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3