High Efficiency and Eco-Friendly Heat Treatment of Small Parts with a Low-Power Diode Laser Beam

Author:

Hirogaki Toshiki1,Aoyama Eiichi1,Ogawa Keiji2,Ogawa Sachiko3,Okamoto Rie1,Oda Ryosuke1

Affiliation:

1. Doshisha University

2. University of Shiga Prefecture

3. College of Industrial Technology

Abstract

Demand is increasing for the manufacturing and machining of small mechanical parts. We focus on using a multi-functional desktop-sized machine tool to meet such demands because power consumption is decreased when they are machined. However, few reports have focused on heat treatment among manufacturing processes, we investigate the laser heat treatment of small parts as a highly efficient and eco-friendly method and propose in-situ heat treatment on a desktop-sized machine tool using a low-power diode laser beam. We quenched a small thin steel plate with a 30 W diode laser source. Our proposed method makes it feasible to quench a small thin steel plate and effectively reduces the power consumption of in-situ heat treatment by a desktop-sized machine tool.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Precision Temperature Control for Semi-Conductor Laser Based on Genetic Algorithm;Journal of Nanoelectronics and Optoelectronics;2018-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3