Abstract
We developed a real-time nanomanipulation system based on high-speed atomic force microscopy (HS-AFM). During manipulation, the operation of the manipulation is momentarily interrupted for a very short time for high-speed imaging; thus, the topographical image of the fabricated surface is periodically updated during the manipulation. By using a high-speed imaging technique, the interrupting time could be much reduced during the manipulation; as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. As for the high-speed imaging technique, we employed a contact-mode HS-AFM to obtain topographic information through the instantaneous deflection of the cantilever during high-speed scanning. By using a share motion PZT scanner, the surface could be imaged with a frame rate of several fps. Furthermore, the high-speed AFM was coupled with a haptic device for human interfacing. By using the system, the operator can move the AFM probe into any position on the surface and feel the response from the surface during manipulation. As a demonstration of the system, nanofabrication under real-time monitoring was performed. This system would be very useful for real-time nanomanipulation and fabrication of sample surfaces.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science