Microstructure and High-Temperature Oxidation-Resistant Performance of Several Silicide Coatings on Nb-Ti-Si Based Alloy Prepared by Pack Cementation Process

Author:

Li Jing1,Guo Xi Ping1

Affiliation:

1. Northwestern Polytechnical University

Abstract

The microstructure and high-temperature oxidation-resistant performance of several silicide coatings on an Nb-Ti-Si based alloy were revealed in the present work. These silicide coatings were prepared respectively at 1250°C for 8 h by pack siliconizing process, Si-Y co-deposition process and Si-Al-Y co-deposition process (with different Al contents in the packs). The results showed that the purely siliconized coating was composed of a (Ti,Nb)5Si3 ouer layer, a (Nb,X)Si2 (X represents Ti, Cr and Hf elements) middle layer and a (Ti,Nb)5Si4 inner layer. A thicker and more compact double-layer structure including a (Nb,X)Si2 outer layer and a (Ti,Nb)5Si4 inner layer was observed in the Si-Y co-deposition coating. In addition, a higher Y content (about 0.34 at. %) in the outer layer of the Si-Y co-deposition coating was obtained, while the Y content was only about 0.06 at. % in the purely siliconized coating. The Si-Al-Y co-deposition coating possessed a (Nb,X)Si2 outer layer, a (Ti,Nb)5Si4 middle layer and an Al, Cr-rich inner layer. A suitable addition of Al powders (5 wt. %) in the packs was beneficial to thicken the (Nb,X)Si2 outer layer, while a sharp reduction in the coating thickness was found when excess Al powders (10 wt. %) was added in the packs. However, compared with the former coating, the later coating prepared with more Al powders in the packs resulted in a slight increase in the content of Al and Y in the (Nb,X)Si2 outer layer from about 0.21 and 0.54 at. % to 0.87 and 0.79 at. % respectively. The thickness and microstructure of the scales formed on above four coatings upon oxidation at 1250°C for either 5 h or 100 h were comparatively investigated. The oxidation resistance of these silicide-type coatings was notably enhanced by the addition of Y and Al. The Si-Al-Y co-deposition coating, which was prepared with 5 wt. % Al powders in the pack, possessed the best oxidation resistance due to its optimum dense and continuous scale and compact coating remained. Keywords: Nb-Ti-Si based alloy; coating; microstructure; oxidation-resistant perfor-mance *Corresponding author. Tel./fax: +86 29 88494873. E-mail address: xpguo@nwpu.edu.cn (X. Guo).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3