Affiliation:
1. Lappeenranta University of Technology
Abstract
This work describes a fuzzy expert system for rough turning. In order to automate unmanned turning, safety of the process must be ensured. In addition, any quality requirements should be fulfilled and, within these constraints, productivity maximized. The traditional approach in adaptive control of machining is to keep a measured quantity, such as power, within acceptable limits. However, there have been some studies measuring distinct phenomena in machining and identifying “cutting states” based on the phenomena. By identifying cutting states corresponding to phenomena monitored by human experts, it is possible to construct an intelligent machining system emulating the decision making of a human expert. This paper concentrates on defining the requirements for the inference part of such of an intelligent machining system. This work concentrates on both functional requirements, such as capability to take into account specific cutting states. The existence of process monitoring subsystems which detect and measure the cutting phenomena is assumed. As a result, a Sugeno-type fuzzy control is suggested, and feasibility and the level of completeness of such a system are discussed and issues requiring further study are identified.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fuzzy feed rate and cutting speed optimization in turning;The International Journal of Advanced Manufacturing Technology;2018-03-16
2. Comparison of methods for chipping quality estimation in turning;The International Journal of Advanced Manufacturing Technology;2015-03-06