A Sugeno-Type Fuzzy Expert System for Rough Turning

Author:

Ratava Juho1,Luukka Pasi1,Lohtander Mika1,Varis Juha1

Affiliation:

1. Lappeenranta University of Technology

Abstract

This work describes a fuzzy expert system for rough turning. In order to automate unmanned turning, safety of the process must be ensured. In addition, any quality requirements should be fulfilled and, within these constraints, productivity maximized. The traditional approach in adaptive control of machining is to keep a measured quantity, such as power, within acceptable limits. However, there have been some studies measuring distinct phenomena in machining and identifying “cutting states” based on the phenomena. By identifying cutting states corresponding to phenomena monitored by human experts, it is possible to construct an intelligent machining system emulating the decision making of a human expert. This paper concentrates on defining the requirements for the inference part of such of an intelligent machining system. This work concentrates on both functional requirements, such as capability to take into account specific cutting states. The existence of process monitoring subsystems which detect and measure the cutting phenomena is assumed. As a result, a Sugeno-type fuzzy control is suggested, and feasibility and the level of completeness of such a system are discussed and issues requiring further study are identified.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy feed rate and cutting speed optimization in turning;The International Journal of Advanced Manufacturing Technology;2018-03-16

2. Comparison of methods for chipping quality estimation in turning;The International Journal of Advanced Manufacturing Technology;2015-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3