Design Calculation of Micro-Displacement Amplifier Mechanism Based on Bridge Flexure Hinge

Author:

Zhou Huan Wei1,Chen Xin2,Chen Xin Du2,Li Ke Tian2

Affiliation:

1. Guangzhou Institute of Railway Technology

2. Guangdong University of Technology

Abstract

According to the microstructure characteristics of the optical components surface, the paper designs a bridge right-angle flexure hinge driven by a piezoelectric ceramic. It meets the driving micro-displacement magnification requirements and solves the coupling problem in work. Using the calculation formulas of statics and calculation formula of bending moment, the thesis explores the motion law of piezoelectric ceramics with 1KHZ excitation frequency. Through the exploration of the factors of bridge flexure hinge angle stiffness and tensile stiffness, the mathematical model of input displacement and output displacement is established. Studying the theory about the elimination of motion process coupling, it excavates the function relationships of flexure hinge angle and magnification. And the relationship is unearthed among driving force of piezoelectric ceramic, the flexure hinge stiffness, cutting force and mass of cutter system. The paper establishes their mathematical model between the above elements and the output micro-displacement, and the theoretical result is calculated by Matlab. Finally, using Pro/Engineer 3D digital modeling and analysis of simulation results by Ansys, it is found that the error can be controlled in an acceptable range by comparing the theoretical results with simulation results. Through the above analysis, the theoretical design is found to be reliable and effective.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on fast tool servo machining of optical freeform surfaces;The International Journal of Advanced Manufacturing Technology;2017-11-18

2. Dynamics Model of Micro-Displacement Stage Based on High-Frequency;Key Engineering Materials;2014-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3