Optimization and Application of NTC Thick Film Segmented Thermistors

Author:

Nikolic Maria Vesna1,Aleksic Obrad.S.1,Radojcic Branka M.1,Lukovic Miloljub D.1,Nikolic Nenad1,Djuric Zorka2

Affiliation:

1. University of Belgrade

2. SASA

Abstract

NTC thermistor paste for printing thermal sensors on alumina was formed of very fine Ni0.5Cu0.2Zn1.0Mn1.3O4 thermistor powder obtained by a combined mechanical activation/thermal treatment process, organic vehicle and glass frit. Sheet resistivity was measured using an R-test matrix and it was much lower than the value determined for pure nickel manganite thermistors. The thermistor exponential coefficient was calculated from the R[ diagram measured in the temperature range-30 to +120°C in a climatic chamber. Thick film segmented thermistors with reduced dimensions (optimized construction) were printed sequentially layer by layer, dried and fired at 850°C/10 min in air. Electrodes were printed of PdAg conductive and solderable paste. The samples obtained were characterized by electrical and thermal measurements. The obtained NTC segmented thermistors with reduced dimensions were applied in a thermal sensor for water flow in the water mains. It contained a cold thermistor for measuring input water temperature and a self-heating thermistor for measuring the dependence of water current on water flow rate at a set input voltage power. Initial measurements show that the thermal sensor system requires a low input voltage power making it much easier and safer for operation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3