Abstract
Boron-doped nanocrystalline silicon thin films(p-nc-Si:H) were deposited on glass substrates by plasma enhanced chemical vapour deposition (PECVD) using SiH4/ H2/ B2H6. The effects of substrate temperature, rf power and diborane flow on the microstructure, the electrical properties of nanocrystalline silicon thin films have been investigated. The results show that, increasing substrate temperature, rf power and B2H6flow can improve the conductivity of P-Si thin film. However, exceeding one value, they are not advantageous to improve the conductivity due to the decrystallization of films. Hence, appropriate process conditions are crucial for the preparation of high quality p layer. crystalline volume fraction (Xc) 26.2 %, mean grain size (d) 3.5nm and conductivity 0.374S/cm, p-nc-Si:H thin film was deposited.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science