Earing Prediction in Drawing and Ironing Processes Using an Advanced Yield Criterion

Author:

Barros Pedro Daniel1,Oliveira Marta C.1,Alves J. Luís2,Menezes L.F.1

Affiliation:

1. University of Coimbra

2. University of Minho

Abstract

This work aims to contribute to the understanding of the role/influence of advanced yield criteria on the earing profile prediction after drawing and ironing, for a cylindrical cup benchmark proposed at the NUMISHEET 2011 conference [1]. Two typical materials used for can-making were considered and studied: an AA5042 aluminum alloy and an AKDQ steel. The drawing and ironing operations are performed on a special die which allows drawing and ironing in one single punch stroke in order to simplify the real process. The benchmark results report include, for each material: (i) the earing profile after drawing and ironing, presenting the cup height evolution with the angle from the rolling direction, and (ii) the evolution of punch force with punch stroke. This work presents a comparison between experimental and numerical results obtained for the aforesaid benchmark with DD3IMP in-house solver, using two sets of parameters for the Cazacu and Barlat 2001 [2] yield criterion, identified based on uniaxial tensile, equi-biaxial tension and disc compression test results. The first set uses the initial yield stress values while the second one used the flow stress values for an accumulated plastic work of 20 MPa. The results highlight the different impact of the experimental data in the earing prediction for both materials: the results for the second set are slightly improved for the AKDQ steel while for AA5042 the effect is negligible. The improved earing prediction obtained with the second set for the AKDQ steel seems to result from a better description of the stress states that occur in the flange zone.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3