Abstract
The recently developed SSH3D solid-shell element [1], which is based on the Enhanced Assumed Strain (EAS) and the Assumed Natural Strain (ANS) techniques, is utilized for the modeling of a severe bending sheet forming process. To improve the element's ability to capture the through thickness gradients, a specific integration scheme was developed. In this paper, the performances of this element for the modeling of the T-bent process were assessed thanks to comparison between experimental and numerical results in terms of the strain field at the outer surface of the sheet. The experimental results were obtained by Digital Image Correlation. It is shown that a qualitative agreement between experimental and numerical results is obtained but some numerical parameters should be optimized to improve the accuracy of the simulation predictions. In this respect, the influence of the penalty coefficient of the contact modeling was analyzed.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献