Gas Sensing Performance of Macroporous SnO2 Thin Film Prepared by Using Carbonaceous Polysaccharide Microspheres as Pore-Forming Agent

Author:

Zhou Dong Xiang1,Gan Lu1,Fu Qiu Yun1,Gong Shu Ping1,Liu Huan1,Luo Wei1,Zhao Jun1

Affiliation:

1. Huazhong University of Science and Technology

Abstract

The macroporous SnO2thin film has been successfully prepared on alumina substrate with printed Ag interdigital electrodes by sol-gel dip-coating method. The carbonaceous polysaccharide microspheres synthesized by hydrothermal method were used as pore-forming agent. The SnO2thin film prepared without using carbon microspheres was also synthesized for comparison. X-ray diffraction and scanning electron microscopy were taken to study the micro-characteristics of samples. The influences of operating temperature, gas concentration and structure feature on the H2S sensing performance of SnO2thin film samples were systematically studied. Compared with SnO2thin film prepared without using carbon microspheres, the macroporous SnO2thin film showed a considerably reduced recovery time and good response-recovery properties.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3