Structural Performance of Typical Beam-Column Joints in Yingxian Wood Pagoda - An Experimental Study

Author:

Chen Zhi Yong1,Zhu En Chun1,Pan Jing Long1,Wu Guo Fang1

Affiliation:

1. Harbin Institute of Technology

Abstract

Yingxian Wood Pagoda, built in 1056, is located in the town of Yingxian County, Shanxi Province, China. It is the oldest and highest standing ancient wood structure in China. The pagoda is octagon-shaped in plan, with a total height of 67.31m and a base diameter of 30.27m. It appears as a five-storeyed structure, but actually consists of nine storeys, with four shorter but stiffer storeys hidden between the five apparent storeys. Yingxian Wood Pagoda was built without any metal connectors like nail, screw, or bolt. Instead, Tenon-Mortise connections and Dou-Gong brackets were used to connect all posts and beams. Tenon-Mortise connections and Dou-Gong brackets have been playing a vital role for the pagoda to resist severe winds, earthquakes and some human-induced disasters for nearly a thousand years. To evaluate the safety of the pagoda, it is, therefore, useful to investigate the structural performance of the beam-column joints, most important for Yingxian Wood Pagoda to resist lateral load. In this study, two models of typical beam-column joints of the pagoda, MBCJ-I and MBCJ-II, were manufactured following a ratio of 3.4 to the prototype of the joints. Non-destructive cyclic loading test of the models under different vertical load and destructive cyclic test of the models under vertical load of 20kN were conducted. The hysteretic stiffness of MBCJ-I was lager than MBCJ-II, and increased linearly with vertical load N. The relationship between and N was obtained by regression of the test results using the least square method. The stiffness of model joint under vertical load was 70.6kN/mm. The failure modes, energy-dissipation performance, moment resistance and bending stiffness of both model joints were derived and discussed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference13 articles.

1. M.D. Chen, Yingxian Wood Pagoda. Cultural Relic Press, Beijing, (2001).

2. E.C. Zhu, Z.Y. Chen and J.L. Pan, Finite Element Modelling of Dou-Gong Brackets of Yingxian Wood Pagoda, in: 11th World Conference on Timber Engineering (WCTE 2010), Trentino, (2010).

3. J. Li, Ying Zao Fa Shi. China Bookstore Press, Beijing, (2006).

4. State Forestry Bureau of the People's Republic of China, Method of Testing in Compressive Strength Parallel to Grain of Wood GB/T 1935-2009, Standards Press of China, Beijing, (2009).

5. State Forestry Bureau of the People's Republic of China, Method of Testing in Shearing Strength Parallel to Grain of Wood GB/T 1937-2009, Standards Press of China, Beijing, (2009).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3