Effect of High-Frequency Induction Carburization on Ti6Al4V Alloy Tissue and Wear Performance

Author:

Guan Jing1,Jiang Xue Ting1,Cheng Xing1,Yang Feng1,Liu Jing1

Affiliation:

1. Guizhou Normal University

Abstract

The surface of Ti6Al4V alloy was rapidly carburized by high-frequency electromagnetic induction heating under vacuum. The microstructure and hardness of the carburized layer were studied. The wear properties of the carburized layer were tested at 50, 100 and 200 rpm using the end face friction and wear device, and the wear mechanism was analyzed. The results show that the TiC strengthening phase was formed on the surface of Ti6Al4V alloy after high-frequency induction carburization, and the surface grains were refined. The surface hardness reaches 1116 HV0.25, but the brittleness of the carburized layer increases with increasing temperature. The amount of wear was reduced by 54% at 100 rpm. The roughness of the wear scar was reduced from 3.26 μm to 2.28 μm of Ti6A14V alloy matrix. The coefficient of friction and wear rate increases with increasing speed. The wear mechanism was transformed from adhesive wear and oxidative wear of the substrate to abrasive wear after carburizing.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3