Numerical Analysis of Microstructure Development during Laser Welding Nickel-Based Single-Crystal Superalloy Part I: Stray Grain Formation

Author:

Gao Zhi Guo1

Affiliation:

1. Anyang Institute of Technology

Abstract

The mathematical modeling of microstructure development is further extended through coupling of heat transfer model and columnar/equiaxed transition (CET) model during nickel-based single-crystal superalloy weld pool solidification with different welding conditions (laser power, welding speed and welding configuration). It is indicated that crystallographic orientation plays an important role in stray grain formation ahead of the solid/liquid interface on the basis of constitutional undercooling mechanism. (001) and [100] welding configuration promotes symmetrical distribution of microstructure morphology about the weld pool centerline that is favored for reduction of stray grain formation, while detrimental (001) and [110] welding configuration induces asymmetrical distribution of microstructure morphology with more stray grain formation and deteriorates the weldability. The mechanism of increasing stray grain formation due to misorientation of dendrite growth crystallography is proposed. Appropriate low heat inputs (low laser power or high welding speed) of solidification conditions prevents stray grain formation and vice versa, and suppress the size of vulnerable [100] dendrite growth region. Weld pool geometry, θ-φ of solid/liquid interface, morphology transition and stray grain formation on either side of weld are closely correlated. In order to eliminate stray grain formation through microstructure control, it is imperative to optimize the welding configurations for defect-free weld through useful welding configuration-microstructure map. The theoretical predictions are verified by the experiment results in a consistent way. In addition, the model is also applicable to other single-crystal superalloys with similar metallurgical properties by feasible laser welding or laser cladding.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3