Recycled Polymer Concrete Composite: A Retrospective Review of the Literature and Framework for Thermal Comfort in Homes

Author:

Ortega-Jimenez Cesar Humberto1,Ardón Eduardo1,Pineda Jose1,Ventura Carlos1,Núñez Carlos1,Núñez Darwin1,Romero Carlos1

Affiliation:

1. Universidad Nacional Autónoma de Honduras (UNAH)

Abstract

The aim of this paper is to review the literature on Materials science to identify the current research and to provide direction for future research in thermal properties of the concrete block composite, either with Polyethylene Terephthalate (PET) or Polystyrene (PS), presenting the opportunity to make an important methodological contribution by applying systematic review in three areas of Materials science: Composites, Building Materials, as well as Testing and Evaluation of Materials. This is a growing interdisciplinary field since there are no current comparative papers addressing both PET and PS in the same research for concrete composites. Papers investigating to what extent, what type and how academic publications are integrated on the analysis of the characteristics of the two recycled polymers (PET and PS), to improve the thermal properties of the concrete block and contribute to the research of sustainable thermal comfort in homes. They were reviewed, keywords were identified within a framework of composites, building materials, as well as testing and evaluation of materials, and a lexical analysis of the papers was conducted. The results of current research show that both forms of recycling (PS and PET), combined with concrete, have sustainability in thermal comfort. The analysis reveals that previous research has focused on PET-Concrete (i.e., concrete-PET polymer composite) since it is more viable, due to its large amount of recycling. While this has benefited home builders in their ability to respond with some thermal comfort with higher construction efficiency, it also clarifies that there has been research done on PS-Concrete (i.e., concrete-PS polymer composite), presenting greater thermal comfort, because it has lower thermal conductivity. This finding suggests the need for further research within this narrow field, with absence of data, since most prescriptive recommendations have not been tested and lack practical applications, which is why the need for more empirical and experimental studies are identified. Based on the novelty of the PET or PS recycling concepts, we highlight the need of better collaboration between academic disciplines, such as engineering and architecture to provide better experimental evidence for recycling of polymers, including empirical approaches for the different types of composites and aggregate distributions, which can be made with concrete to improve thermal insulation performance and energy savings for manufacturers.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3