Affiliation:
1. North China University of Technology
2. University of Leeds
Abstract
Mould casting and drop-tube techniques were used to solidify a AlCoCrFeNi2.1 eutectic high-entropy alloy under conditions of high cooling rate. The samples obtained from two different methods present the same phase constituent, FCC and B2 phases. During mould casting experiments the alloy almost solidified into the eutectic structure consisting of lamellar and anomalous morphology, with a tiny fraction of cellular and dendrite morphology being observed at certain sites of the sample surface due to the corresponding high cooling rate. Instead, during drop-tube experiments a typical, coarse dendrite structure of FCC single phase was formed across the entire 106-150 μm particle. The cellular structure can also be formed directly from the melt. The rest region solidified into the general eutectic morphology as was observed in the casting rods. The results clearly indicate the transition from coupled eutectic growth to single-phase dendrite growth with increasing departures from equilibrium for the multi-component AlCoCrFeNi2.1 eutectic high-entropy alloy.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science