The Effect of Using Baffles on the Rate of Mass Transfer of a Cylindrical Stirred Tank Reactor

Author:

Shokry Fathy1,El-Gayar Dina Ahmed2,El-Fattah Marwa Abd1,Farag H.A.2,Sedahmed Gomaa H.2

Affiliation:

1. Pharos University in Alexandria

2. Alexandria University

Abstract

Owing to the high mixing capacity, the stirred tank reactor is the key class of reactors in the chemical process industry and pharmaceutical industry. The mass transport nature of a batch stirred tank reactor with a fixed copper wall with a cylinder form was studied using copper dissolution in acidified dichromate which is controlled by diffusion. Variables analyzed included the speed of rotation of the impeller, the shape of the impeller and the physical specifications of the solution and the existence of baffles. The data were correlated for the conditions 3667.323 < Re < 34993.18 and 960 < Sc < 1364, for radial flow by the equation: Sh =0.3453 *Sc1/3*Re0.66 but for axial flow by the equation: Sh =0.5866 *Sc1/3*Re0.59. Through speed of rotation of the impeller increases,it allows the rate of mass transfer from the fixed bed to the solution to rise. The radial-flow turbine is more effective than the axial-flow turbine in increasing the rate of mass transfer. The usage of baffles plays a significant role in rising the rate of mass transfer. Using baffles; the correlation will be Sh =0.0769 *Sc1/3*Re0.84 for radial flow and Sh =0.1157 *Sc1/3*Re0.78 for axial flow. The purpose of this research is to estimate the rate of mass transport that can be required in corrosive reactions, and also to maximize the mass transfer rate that can be achieved in other processes, such as electroplating in presence of baffles.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3