Use of Palladium-Modified Polyaniline Electrode as a Sensitive Element of Fire Sensor

Author:

Ryshchenko Igor1,Lyashok Larisa1,Vasilchenko Alexey2,Asotskyi Vitalii2,Skatkov Leonid3

Affiliation:

1. National Technical University «Kharkiv Polytechnic Institute»

2. National University of Civil Defence of Ukraine

3. Ben Gurion University of Negev

Abstract

Results of the development of a method for immobilizing nanosized palladium into an electrochemically synthesized polyaniline (PAn) electrically conductive porous matrix to create a sensitive element of an ignition sensor are presented. Two methods of manufacturing a sensitive element in the form of an electrode are investigated. The first method consists in the co-precipitation of polyaniline and palladium on a graphitized butyl rubber substrate in a mode of cycling of potential. It was shown that this method can be used to obtain a volume-porous electrode in which palladium nanoparticles are embedded in a polyaniline matrix. The second method involves the deposition of palladium on a polyaniline film formed on graphitized butyl rubber. It was shown that micron-sized island palladium conglomerates on the surface of a polyaniline film can be obtained by this method. The conclusions made are confirmed by physical research methods and the results of scanning electron microscopy. Investigations of the electrocatalytic properties of the electrode in the sensor model showed that with a change in the H2 concentration formed upon ignition, occurs change in the hydrogen concentration on the surface of metal-catalyst (Pd) and a linear change in the current of electrochemical reaction. Comparison of a composite volume-porous polyaniline electrode with embedded palladium showed its superior efficiency compared to a compact palladium electrode and an electrode in which palladium is deposited on the surface of a polyaniline film. The possibility of using an electrochemical detector based on polyaniline with immobilized palladium nanoparticles for a gas amperometric sensor of low hydrogen concentrations and a fire hazard detector is shown.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3