Affiliation:
1. University of Science and Technology Beijing
2. Shaanxi University of Science and Technology
3. Xinyu Steel Group Co, Ltd
Abstract
Through the Gleeble3500 thermal simulation test machine, the phase transformation law of Nb microalloyed steel was studied and tested. After the compression deformation, it was cooled to room temperature at different speeds. Obtain the dynamic continuous cooling transformation diagram and the scanning structure diagram of the test steel, and then analyze the phase composition under different cooling speeds through JMatPro material performance simulation. The results show that: at a lower cooling speed (0.1°C/s), austenite decomposition is a diffusion-type phase change that takes place in a high-temperature region, and carbon atoms can diffuse sufficiently. At a moderate cooling rate (1°C/s), the bainite phase transition is a semi-diffusion phase transition in which carbon atoms are displaced in a non-cooperative thermally activated transition mode. When the cooling rate is high (15°C/s), the martensitic transformation is a non-diffusion-type transformation carried out in the low temperature region, and the atoms are directly transferred from the austenite lattice to the martensite lattice. With the increase of the cooling rate and the decrease of the transition temperature, from low-speed cooling→medium-speed cooling→high-speed cooling, respectively, the diffusion type phase transition→semi-diffusion type phase transition→the non-diffusion type phase transition. At different cooling rates, the continuous cooling transition diagram simulated by JMatPro is basically the same as the phase transition in the dynamic continuous cooling transition diagram of the test steel, which proves that the simulation prediction of the dynamic continuous cooling transition of the test steel by the JMatPro software has high accuracy and applicability.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science