Performance of a Matrix Type High Speed Steel after Deep Cryogenic and Low Tempering Temperature

Author:

Worasaen Kaweewat1,Stark Andreas2,Tuchinda Karuna3,Suwanpinij Piyada1

Affiliation:

1. King Mongkut’s University of Technology North Bangkok

2. Helmholtz-Zentrum Geesthacht

3. Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS)

Abstract

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3