Inferences of Baking Time on Hydrogen Embrittlement for High Strength Steel Treated with Various Zinc Based Electroplating

Author:

Hino Makoto1,Mukai Shunsuke1,Shimada Takehiro1,Okada Koki1,Horikawa Keitaro2

Affiliation:

1. Hiroshima Institute of Technology

2. Osaka University

Abstract

The hydrogen embrittlement of SK85 high-strength steel sheets was evaluated using a three-point bending test. The effect of electroplating the metal with zinc-based coatings on hydrogen embrittlement was examined by baking treatment of differently electroplated steel specimens. After electroplating, all the specimens underwent hydrogen embrittlement, promoted by hydrogen incorporation into the metal frame, owing to the reduction of hydrogen ions during electroplating. The hydrogen embrittlement of both zinc-and zinc-SiO2-electroplated SK85 steel continued after baking for 24 hours at 473 K, but that of zinc-nickel-and zinc-nickel-SiO2-electroplated SK85 steel ceased. Furthermore, TDA revealed that the trapped hydrogen could be released from steel at approximately 473 K. However, after baking, hydrogen embrittlement did not completely disappear, and we suggest that the formation of hydrogen vacancy clusters also accounts for this fracture phenomenon. The hydrogen incorporated into steel during electroplating led to the formation of hydrogen vacancy clusters, which allowed the formation of embrittlement. However, zinc and zinc-SiO2 films were not permeable enough to release these voids; while the peculiar zinc–nickel and zinc-nickel-SiO2 film structure enabled the hydrogen vacancy clusters to diffuse from the substrate.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3