New Design of High Power Mercury Target Vessel of J-PARC

Author:

Wakui Takashi1,Wakai Eiichi1,Kogawa Hiroyuki1,Naoe Takashi1ORCID,Hanano Kohei1,Haga Katsuhiro1,Shimada Tsubasa2,Kanomata Kenichi2

Affiliation:

1. Japan Atomic Energy Agency

2. Metal Technology, Co. Ltd.

Abstract

A mercury target vessel for the spallation neutron source at the J-PARC, which the mercury vessel was covered with the water shroud, was improved to realize the operation at the high beam power in two steps. In the first step to realize the stable operation at 500 kW, the basic structure of the initial design was followed and the connection method between the mercury vessel and the water shroud was changed to prevent the failure from the connection. The service operation at the beam power of 500 kW was realized in the about eight months. In the second step to realize the stable operation at 1 MW, the new structure which only rear ends of vessels were connected was investigated. The new structure which has the cooling of the mercury vessel to reduce thermal stress and the thick internal and external vessels of the water shroud to increase the stiffness for the internal pressure was adopted. The stresses in each vessel were lower than the allowable stress based on the elastic design criteria and it was confirmed that the operation with a beam power of 1 MW could be conducted.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3