Affiliation:
1. National Institute for Materials Science
2. Gifu University
3. Osaka University
Abstract
In this study, the temperature increase of the Ti-17 alloy (Ti–5Al–2Sn–2Zr–4Cr–4Mo, wt.%) during isothermal forging in the (α + β) dual-phase region was investigated using large-size workpieces forged between hot dies in a 1500-ton forging press. The temperature increase was predicted using finite element analysis (FEA). The tip of a thermocouple was inserted into the center of the workpiece (diameter: 100 mm; height: 50 mm). The forging temperatures were 1023 K (750 °C) and 1073 K (800 °C) in the (α + β) dual-phase region. The strain rate was 0.05 s−1 and 0.5 s−1 at each temperature. Meanwhile, the compression percentage was 75%. The true stress–true strain curves were inversely obtained by fitting the load–stroke curves using the FEA. The predicted temperature was in a good agreement with that in the experimental results when the value of 1.0 was used as the conversion factor for plastic deformation energy to heat energy in the FEA under the current forging conditions. At the strain rate of 0.5 s−1, the temperature instantly increased to a β-transus temperature in 3 s at 1073 K (800 °C). In contrast, the temperature logarithmically increased at both 1023 K (750 °C) and 1073 K (800 °C) at 0.05 s−1 in 28 s (e.g., 42 K at 1023 K (750 °C)). The obtained true stress–true strain curves indicate that flow softening occurred during the forgings, which is attributed to dynamic recrystallization and/or dynamic recovery. The temperature increase in the Ti-17 alloy was smaller than that in the Ti–6Al–4V alloy under the same forging condition.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science