Abstract
Peritectic transformation contraction of ferrite to austenite plays an important role in the formation of cracks for steels. In order to evaluate the peritectic transformation contraction of steels at the initial solidification, the solidification of 304 stainless steel under different cooling rates were carried out by using high temperature laser confocal microscopy, and then the surface roughness and peritectic transformation contraction were analysed in combination with the microstructure of solidified steel. The result shows that the solidification model of 304 stainless steel was ferrite-austenite model in the experiments, and peritectic transformation occurred during solidification. The residual ferrite in the as-cast structure were vermicular, skeletal and reticular in turn with the increase of cooling rate. The volume contraction caused by peritectic transformation resulted in wrinkles (surface roughness) appearing on the grain surface. The peritectic transformation contraction that was affected by surface roughness increased first and then decreased with cooling rate increasing, indicating the peritectic transformation contraction can be evaluated by the surface roughness.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献