Effect of Gas Microbubble Injection and Narrow Channel Structure on Cavitation Damage in Mercury Target Vessel

Author:

Naoe Takashi1ORCID,Kinoshita Hidetaka1,Kogawa Hiroyuki1,Wakui Takashi1,Wakai Eiichi1,Haga Katsuhiro1,Takada Hiroshi1

Affiliation:

1. Japan Atomic Energy Agency

Abstract

The target vessel, which enclosing liquid mercury, for the pulsed spallation neutron source at the J-PARC is severely damaged by cavitation caused by proton beam-induce pressure waves in mercury. To mitigate the cavitation damage, we adopted a double-walled structure with a narrow channel for the mercury at the beam window of the target vessel. The narrow channel disturbs the growth of cavitation bubbles due to the pressure gradient. In addition, gas microbubbles are injected into the mercury to suppress the pressure waves. After finishing service operation, the front end of the target vessel was cut out to inspect the effect of those cavitation damage mitigation technologies on the interior surface. The damage depth of the cutout specimens for the original design type and double-walled target vessels were quantitatively investigated by the replica method. The results showed that the double-walled target facing mercury with gas microbubbles operate 1812 MWh for an average power of 434 kW is equivalent to the damage of original design target operated 1048 MWh for average power of 181 kW. The erosion depth due to cavitation in the narrow channel is clearly smaller than on the wall facing bubbly mercury.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3