Incorporation of Hybrid Pre-Dispersed Organo-Montmorillonite/ Destabilized Bentonite Nanofillers for Improving Tensile Strength of PEVA Copolymer with 40% Vinyl Acetate Composition

Author:

Mohammed Fitri Tuty Fareyhynn1,Osman Azlin Fazlina1ORCID,Othman Rahimah2,Mustafa Zaleha3

Affiliation:

1. Universiti Malaysia Perlis (UniMAP)

2. Universiti Malaysia Perlis

3. Universiti Teknikal Malaysia Melaka

Abstract

In this work, soft and flexible poly (ethylene-co-vinyl acetate) (PEVA) with 40% vinyl acetate (VA) composition was used as matrix material to form nanocomposites with single nanofiller (organo-montmorillonite (OMMT) or Bentonite (Bent)) and hybrid nanofillers (OMMT+Bent in the ratios of 4:1, 3:2, 2:3 and 1:4). In order to achieve greater exfoliation and dispersion of the hybrid nanofillers in the PEVA matrix, the pre- dispersing and destabilization technique was applied to the O-MMT and Bent, respectively. The procedures were done prior to the melt compounding process of the nanocomposite. A tensile test was done to evaluate the mechanical properties of the resultant nanocomposites and to allow the selection of the best OMMT/Bent ratio for the production of the hybrid nanocomposite. The structure and fractured surfaces of the neat PEVA and nanocomposite were analyzed using Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM), respectively. Results indicated that the addition of hybrid pre-dispersed OMMT/destabilized bentonite nanofillers into the PEVA matrix resulted in greater mechanical performance as compared to the single OMMT or single Bent nanofiller. The best achievement in the tensile strength and elongation at break of the PEVA hybrid nanocomposite was obtained when the hybrid nanofillers was added in the ratio of 4:1 (OMMT: Bent). The SEM analysis showed that the PEVA hybrid nanocomposite with 4OMMT: 1Bent had greater matrix deformation than the neat PEVA when subjected to tensile load. This mechanical deformation could be related to the increased flexibility of the PEVA chains which facilitated more energy absorption during the stretching of the material. Apparently, this mechanism acted as a matrix toughening process which allowed the increment of both tensile strength and elongation at break values of the PEVA upon the addition of the hybrid nanofillers.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3