Novel Materials for Myco-Decontamination of Cyanide-Containing Wastewaters through Microbial Biotechnology

Author:

Pavlov Igor N.1,Litovka Yulia A.1

Affiliation:

1. Russian Academy of Sciences

Abstract

This study examined the effectiveness of decontamination of industrial cyanide-containing water using mycelium-based lignocellulosic materials. These results suggest that fungi biomass and plant substrates can be used successfully in the treatment of wastewater contaminated by cyanide. Fungi were isolated from old wood samples taken from a tailing dam with high cyanide content (more than 20 years in semi-submerged condition). All isolated fungi belonged to the genus Fusarium. Fusarium oxysporum Schltdl. is most effective for biodegradation of cyanide-containing wastewaters (even at low temperatures). The most optimal lignocellulosic composition for production of mycelium-based biomaterial for biodegradation of cyanide wastewater consists of a uniform ratio of Siberian pine sawdust and wheat straw. The high efficiency of mycelium-based materials has been experimentally proven in vitro at 15-25 ° C. New fungal biomaterials are provide decrease in the concentration of cyanide ions to 79% (P <0.001). Large-scale cultivation of fungi biomass was carried out by the periodic liquid-phase cultivation. The submerged biomass from bioreactor was used as an inoculum for the production of mycelium-based materials for bioremediation of cyanide wastewater in situ (gold mine tailing).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3