EPR Study of CeO<sub>2</sub> Nano Particles

Author:

Uthra Dinesh1,Sharma M.P.1

Affiliation:

1. Guru Ghasidas Vishwavidyalaya (A Central University)

Abstract

In this paper, we have studied the EPR spectra, X-ray diffraction and Raman Analysis, Microstructures-morphology of the Ceria NPs calcined at different temperatures of 700 °C, 850 °C ,these materials have been synthesized by Co precipitation (CPT) method by using Cerium tri-nitrate hexahydrate and potassium carbonate solutions. Then synthesized precipitate was heated at 70 °C for 20 hour. Slow grinding of the precipitate and calcined for 3 hours at different temperatures viz. 700 °C and 850 °C to form fine Cerium oxide powder-Ceria NPs. The EPR measurements were made using continuous wave spectrometer (X-band, Bruker Biospin EMX Plus). The g values were obtained by using diphynelpirichylhydrageyl (DPPH-C18H12N5O6) sample and got g value is around 1.97. This g tensor is decreased when the calcined temperature are increased, EPR parameters are also changed as the calcined temperature increases. When the calcined temperature is increased from 700 °C to 850 °C, a doublet separated, intensity increased. The X-Ray diffraction pattern shows the nature of the Ceria NPs crystal, with a cubic structure and got the lattice parameters 5.392 Å for samples calcined at temperature of 700 °C and 5.357 Å at 850 °C which shows decreasing trend in lattice parameter with calcination temperature. The intensity of Raman peaks is also shifted upwards with a rise in temperature. This intensity difference could be because of the rise in vibrational amplitudes of the closest neighboring bonds because of the increase in particle size 11.3± 1.0 to 15.6± 1.0 nm at calcination temperatures of 700 °C and 850 °C and the Raman peak of peak I, 461 cm-1 and peak II, 463 cm-1 respectively. Other peaks were not observed in this Raman pattern. The EDS analysis confirms the presence of the Ce and O atoms in the synthesized samples. Spherical shapes and homogeneously distributed Ceria NPs and a rather tendency for agglomeration were confirmed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3