Crystallization Kinetics and Fragility of Al-Based Amorphous Alloy

Author:

Wahid Mohd Fitri Mohamad1,Laws Kevin J.2,Ferry Michael2

Affiliation:

1. Universiti Malaysia Perlis (UniMAP)

2. University of New South Wales

Abstract

Crystallization among amorphous alloy is a crucial study since it generally affects it properties, which may detrimental or beneficial, depending in the intended application of the materials. Controlling crystallization is crucial for obtaining the desired properties. The crystallization study was performed using differential scanning calorimeter (DSC). Samples were heated at heating rate between 20 and 40 K·min-1. Structural evolution during crystallization was studied under X-ray diffraction (XRD). Apparent activation energy for each temperature characteristics was determined using Kissinger’s equation. Local Avrami exponent was investigated using modified Johnson-Mehl-Avrami-Kolgomorov equation. Liquid fragility, which indicates the strength of the glass formation, was predicted using temperature characteristics instead of its viscosity. It was found that upon crystallization both as-cast samples crystallize to cubic-Al, Al2CuMg and Al2Cu and Al3Ni. Alloy with composition of (Al75Cu17Mg8)95Ni5 shows superior activation energy at every temperature characteristics than alloy with composition of Al75Cu10Mg8Ni7. Local Avrami exponent and local activation energy for (Al75Cu17Mg8)95Ni5 show high values at the beginning and at the end of crystallization process. From liquid fragility, it was predicted that the samples are stronger glass former than previous studied Al-amorphous alloys.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3