Abstract
First-principles calculations were conducted to investigate the effects of Zn on the structure of β″ phase. The effects of Cu, which was often added in the alloy, were also taken into consideration. Firstly, single Zn or Cu atom was doped on different sites of the β″ phase. Then the formation enthalpies and lattice constants of doped β″ phases were calculated. The results showed that it was more energetically favorable for single Zn or Cu atom to occupy Si3/Al sites than other sites. Furthermore, different quantities of Zn or Cu atoms were doped on Si3/Al sites. With the amounts of doping atoms increasing, the formation enthalpies of β″ phases doped by Zn were lower than which doped by Cu, indicating that it was more preferential for Zn to enter the β″ phase when Zn content was higher than Cu. Additionally, the doping of Zn could reduce the formation enthalpies of the β″ phase, which promoted the formation of the β″ phases. As a result, the aging hardening response of the alloy was improved. High angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) characterization was also conducted on a peak-aging Zn added Al-Mg-Si-Cu alloy. The HAADF-STEM image of β″ phase showed that the occupancies of Zn atoms were just on the Si3/Al sites and substituted all the Al atoms, which was consistent with the results of first-principles calculations.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science