Structural Characterization of a Biogenic Secretion Extracted from the Tendon or Ligament in Rabbits for Artificial Ligament Formation

Author:

Kuzumaki Toru1,Yamaguchi Tatsuya1,Shimozaki Kengo2,Nakase Junsuke2,Torigoe Kojun3

Affiliation:

1. Tokai University

2. Kanazawa University

3. Fukui Health Sciences University

Abstract

Thus far, our research group has conducted a basic investigation for the development of an artificial ligament, which was performed by utilizing a biogenic secretion that was derived from the Achilles tendon in mice; this was achieved using the film model method. In this study, an attempt has been made to derive a biogenic secretion from the Achilles tendon (tendon gel) and the medial collateral ligament (ligament gel) in rabbits. Subsequently, a discussion was carried out on the possibility of forming a ligament-like structure that was based on the structural, mechanical, and spectroscopic investigations. The tendon gel was successfully formed from a parent tendon that was preserved in vivo for 3, 5, 10, and 15 d. Further, an aligned collagen fiber emerged in the tendon gel, which was subjected to tension on every preservation date. Further, the mechanical behavior of the tendon gel specimens was classified in two groups. The values of the Young's modulus of the specimens preserved for 10 and 15 d were higher than those of the specimens preserved for 3 and 5 d. Within the range of this experimental condition, the aligned collagen fiber structure was formed by applying a tension of approximately greater than 0.05 N. Conversely, only a 10-d preservation period yielded a sufficient amount of ligament gel for the experiment. Notably, the volume of ligament gel was less than that of the tendon gel. In the ligament gel specimen without the synovial membrane, the collagen fiber structure was formed by applying a tension, which was similar to that experienced by the tendon gel specimen. However, the cross-linking and growth of collagen fibers in the ligament gel samples were insignificant as compared with those of the tendon gel samples.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3