Progress towards a Complete Model of Metal Additive Manufacturing

Author:

Nguyen Vu Thua1,Murphy Anthony B.2,Delaney Gary W.3,Cummins Sharen J.3,Cleary Paul W.3,Cook Peter S.1,Gunasegaram Dayalan R.1,Styles Mark J.1,Sinnott Matt D.3

Affiliation:

1. CSIRO Manufacturing Flagship

2. CSIRO Manufacturing

3. CSIRO

Abstract

Metal additive manufacturing based on powder bed fusion processes is increasingly important. However, highly transient physical phenomena that occur in these processes at different length scales are difficult to observe. Challenging and costly experiments are usually needed to obtain data for process understanding and improvement. Computational modelling of powder-bed fusion processes is therefore important from several points of view. These include better process understanding, optimisation of process parameters and component designs, prediction of component properties, qualification of components and to assist process control. Several physical processes have to be treated to develop a complete model, namely the raking of the powder bed surface, the transfer of energy from the laser or electron beam to the metal, the melting and solidification of the powder, the flow of liquid metal in the melt pool, the heat transfer from the melt pool to the surrounding powder and solid metal, the evolution of the microstructure, and the residual stress and deformation of the component. These processes occur at very different scales, and have to be treated using several different computational techniques. In addition, the interdependency of some of the processes has to be accounted for. This paper discusses the rationale for developing a complete model, progress in developing sub-models of the different physical processes, and the framework that is envisaged to combine the sub-models into a predictive model of the additive manufacturing process.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3