Desiccation Induced Shrinkage of Compacted Lateritic Soil Treated via Enzymatic Induced Calcium Carbonate Precipitation Technique

Author:

Zango Muttaqa Uba1,Kassim Khairul Anuar1,Muhammed Abubakar Sadiq1,Ahmad Kamarudin1,Makinda Jodin1

Affiliation:

1. Universiti Teknologi Malaysia

Abstract

Exploring the biological process to enhance the engineering properties of soil have received enormous recognition in recent years. Enzymatic induced calcium carbonate precipitation (EICP) is one of the bio-inspired methods of utilizing free urease to precipitates calcite from urea and calcium ions for bettering the geotechnical properties of poor soils. In this research, the EICP technique was used to improve the volumetric shrinkage strain of compacted soil liner. In this work, the residual soil was treated with various concentrations of cementations ranging from 0.25 to 1.0 M, and the soil was subjected to Atterberg limit tests, compaction test using British standard light (BSL) and reduced British standard light (RBSL) and desiccation drying volumetric shrinkage strain test. The study's findings revealed a remarkable improvement in the liquid limit and plasticity index of the treated residual soils compared to natural soil. It was also found that the volumetric shrinkage strain of the treated soil reduces progressively from 5.24% of natural to 1.49% at 1.0 M cementation solution when the soils were prepared at 0% OMC and BSL compaction effort. Based on the consideration of permissible VSS of less than 4%, the best treatment was obtained at 1.0 M for both BSL and RBSL prepared samples. Similarly, the best compaction plane is found in the treated with 1.0 M cementation solution.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3