Effect of Low-Temperature Aging on Thermally-Induced Phase Transformation of NiTi Wire with a Wide Range of Grain Sizes

Author:

Zhao Zhi Hao1,Lin Jian Ping1,Min Jun Ying1,Hou Yong1,Sun Bo2

Affiliation:

1. Tongji University

2. Saic Volkswagen Automotive Co., Ltd.

Abstract

Thermally-induced phase transformation (PT) is of significance and value to the application of NiTi alloy components. Low-temperature aging (LTA) treatment was used to alter PT characteristics of NiTi alloys avoiding undesirable grain growth. Effect of LTA on PT of NiTi wires with a wide range of grain sizes from 34 nm to 8021 nm was investigated in this study. As the average grain size varies from 34 to 217 nm, the temperature of the B2↔R transformation increase as a result of LTA, and the increasing effect is more obvious at a larger grain size. For NiTi alloys with average grain sizes ranging from 523 to 1106 nm, transformation sequence changes from B2↔B19' to B2↔R due to LTA. For the sample with an average grain size of 2190 nm, the B2↔B19' transformation is replaced by B2↔R←B19' after LTA. When the average grain size is larger than 2190 nm, transformation sequence changes from B2↔B19' to B2↔R↔B19' after LTA. Transmission emission microscope observations reveal that the above-mentioned PT behavior correlates with the coupled effect of grain size and precipitation. The precipitation of Ni4Ti3 in the grains with a size smaller than ~150 nm is inhibited after LTA, the temperature of B2→R of samples with average GS smaller than ~150 nm still is elevated due to the inhomogeneous grain size of NiTi wires.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3