Utilisation of Titanium and Titanium Dioxide as Scaffolds for Proliferating Coral Reef

Author:

Ueda Masato1,Sawatari Chihiro1,Takahashi Tomoyuki1,Tsuruta Hiroaki1,Tokushige Hidenobu2,Hikosaka Hirohisa3,Yonetsu Daigo1,Ikeda Masahiko1

Affiliation:

1. Kansai University

2. Akita University

3. Club DO Diving Centre

Abstract

Estimated 30 percent or more of coral reefs are now in danger of extinction by coastal construction increases and global temperatures rise. Several restoration techniques such as fragmentation, forming, Biorock have been developed in the past few years. In vertebrates such as mammals, osteoblast is known to form the bones composed of hydroxyapatite. Therefore, bone substitutional devices are generally surface modified to improve the adhesion of osteoblasts on the surfaces. Titanium dioxide film is often employed as the surface material for hard tissue substitutes made of titanium and its alloys. In hard corals, on the other hand, the soft tissue covered on the skeletons made of calcium carbonate has osteoblasts as well. The purpose of this work was to investigate the potential of titanium (Ti) and titanium dioxide (TiO2) as scaffolds for proliferating coral reefs by analysing the several interfacial reactions. The rods of pure Ti were anodised in aqueous phosphoric acid at a constant voltage of 80 V. The surfaces were confirmed to be anatase type TiO2. The coral fragments were kept in contact with the rods in a lab-scale aquarium with artificial seawater for several days. The colony of polyps vigorously expanded on the surfaces. Fragments of coral were placed on pure Ti, TiO2 coated pure Ti in Petri dishes and were reared in artificial seawater. Fine spherical precipitates of calcium carbonate with aragonite structure, which is the same inorganic substance as corals, were observed radially and regularly on the surfaces of TiO2. In addition, the adherence of planula larva to the sputtered TiO2 film was observed by using a QCM (Quartz Crystal Microbalance) method. The approach and adhesion of planula larva to the surface could be detected by monitoring the resonance frequency and resistance. The surfaces might have a great potential in coral reef regenerations.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3