Electrochemical Formation of Oxide Films on the Titanium Alloy of Ti6Al4V in Ethylene Glycol-Water Electrolytes to Produce Bioinert Coatings and Increase the Corrosion Resistance of Medical Implants

Author:

Smirnova Olha1,Nikonov Andrej2,Mukhina Yulia3,Pylypenko Oleksij1ORCID

Affiliation:

1. National Technical University «Kharkiv Polytechnic Institute»

2. Kharkiv Medical Academy of Postgraduate Education

3. V. N. Karazin Kharkiv National University

Abstract

The research data on the specific features of the formation of oxide films on the Ti6Al4V alloy in the ethylene glycol-water electrolytes have been given. The kinetic dependences obtained for the alloy allowed us to establish that the specific features of the formation of oxide films during the electrochemical oxidation of the alloy surface depend on the solution composition and the current density. For the water-to-alcohol ratio of 50:50 the kinetic dependences show the sections that correspond to the formation of the barrier oxide layer and also to the formation of the pores due to the desorption of fluoride ions and the growth of the porous portion of oxide. As the water-to- alcohol ratio is decreased the indicated peculiarities of kinetic dependences are met not so often and do not obey any regularity. The obtained data are explained by the fact that an increase in the portion of the organic component of the solution results in a decreased etching capacity of the electrolyte due to the controlled activity of fluoride ions. The anode current density value has a similar effect on the variation of kinetic dependences. Its effect is explained by that an increase in the alloy oxidation rate results in the fast formation of the surface oxide and the specific features of kinetic curves are concealed. The linear relationship between the formation time of oxide of a minimum thickness for given conditions and the current density is unavailable and it is conditioned by the chemical interaction of the oxide film with electrolyte components. The obtained research data can be used for the formation of the individual bioinert and bioactive coatings for the implants of a medical purpose or for the formation of the matrix used for the production of composite coatings.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3